
A novel trans-bis(trimethylsilylmethyl)(oxo)tungsten com-
plex bearing an O–N–O tridentate ligand, WO(Me4pyde)-
(CH2SiMe3)2 (4, pyde = 2,6-pyridinediethanolate), was synthe-
sized and was confirmed to have octahedral structure with two
alkyl groups in trans position by X-ray analysis.  Complex 4
catalyzed the polymerization of norbornene although its activity
was rather low.  The activity of 4 could be dramatically
enhanced by the use of AlEt3 or AlCl3 as a cocatalyst.  

Ring-opening metathesis polymerization (ROMP) is an
important reaction in both scientific and industrial points of
view.  The active site of ROMP has been established to be a
metal alkylidene species.1,2 Alkylidene complexes having
strong π-donor ligands such as imido,3,4 and oxo5 are known to
be quite effective catalysts for ROMP.  Most of such complexes
were generated by α-H elimination from the corresponding cis-
dialkyl compounds.6,4 Therefore, cis-dialkyl complexes are
expected to be catalyst precursors for ROMP.7-9 There are
many examples of alkyl(oxo)tungsten complexes,10 but such
complexes have cis-dialkyl groups favorable for α-H elimina-
tion.  On the other hand, trans-dialkyl complexes have not been
studied in detail as catalyst precursors for ROMP.  

We recently reported that the trans-dichloro(oxo)tungsten
complexes bearing meridional O–N–O tridentate ligands,
WOCl2{(OCR1

2CH2)(OCR2
2CH2)(NC5H3)} (1: R1 = R2 = Me;

2: R1 = R2 = i-Pr; 3: R1 = Me, R2 = Ph) catalyze the ROMP of
norbornene upon activation with Et3Al to give polynorbornenes
with high cis-content.11 In this catalyst system, trans-dialkyl
complex should be formed at the first step in the reaction with
Et3Al.  In order to demonstrate the generation of active species
from trans-dialkylcomplexes, we synthesized a trans-
dialkyl(oxo)tungsten complex and investigated its catalytic
behavior for the ROMP of norbornene.  

The reaction of the trans-dichloro(oxo)tungsten complex 1
with two equivalents of LiCH2SiMe3 in THF/hexane gave a
trans-bis(trimethylsilylmethyl)tungsten complex, WO(Me4pyde)-
(CH2SiMe3)2 (4, pyde = 2,6-pyridinediethanolate), as yellow
crystals in 5% yield (eq 1).12 1H NMR spectrum of 4 in C6D6
indicated that 4 has C2v symmetry in solution.12

The pseudo C2v structure of 4 was confirmed by X-ray
crystallography (Figure 1).13 Complex 4 has two independent
molecules in a unit cell, both the molecules have essentially the
same structure.  Complex 4 has 6-coordinated distorted octahe-
dral geometry in which the two trimethylsilylmethyl ligands are
placed in trans-position as expected from the structure of the
dichloro complexes 2 and 3.11 The terminal oxo ligand is locat-
ed at the trans-position to pyridine N atom and two oxygen
atoms of the Me4pyde ligand are also trans to each other.  The
W–C distances (av. 2.219 Å) of 4 are longer by 0.06 Å than
those of W(=NAr){OC(CF3)2(tolyl)}(CH2-CMe3)2 (av. 2.159
Å, Ar = 2,6-diisopropylphenyl)6 and W(tbp)(PhC≡CPh)R2 (av.
2.154 Å (R = CH3) and av. 2.16 Å (R = CH2Ph), tbp = 2,2'-thio-
bis(4-methyl-6-t-butylphenoxo))9 in which two alkyl groups are
located in cis position.  It is notable that the metal–O distances
of the Me4pyde ligand in 4 (av. 1.860 Å) are significantly short-
er than those of the corresponding Ph4pyde ligand in
Mo(=NAr)2(Ph4pyde)} (1.940(2) Å) and Mo(=NAr)(=CH-
CMe2Ph)(Ph4pyde)} (av. 1.939 Å)14 in spite of larger ionic
radii of 6-coordinated W6+ (0.74 Å) than that of 5-coordinated
Mo6+ (0.64 Å),15 indicating the strong tungsten-dπ—oxygen-pπ
interaction in 4.  

When the complex 4 was heated to 60 °C in C6D6, the
color of the solution changed from yellow to yellow brown.  1H
NMR spectrum of the yellow brown solution showed a singlet
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peak at 9.00 ppm which can be assigned to alkylidene protons
(eq 2).  The 1H NMR signal of the alkylidene species was relat-
ed to a signal at 226 ppm in 13C NMR by HMQC spectrum.
However, the yield of the alkylidene species was as low as 5%
after 19 h at 60 °C.  Elongation of the reaction time did not
improve the yield but resulted in decomposition of the com-
plexes to give a complicated mixture.  

The polymerization of norbornene was performed in
toluene and the results are summarized in Table 1.  Without
cocatalyst at 25 °C, complex 4 requires long reaction time to
give polynorbornene in high yield (run 1).  The polynorbornene
obtained by 4 had relatively low molecular weight and narrow
molecular weight distribution.  Complex 4 did not show any
catalytic activity at 60 °C for 24 h (run 2).  The activity of 4
was significantly lower than that of W(tbp)(PhC≡CPh)-
(CH2SiMe3)2 (run 6), in which two alkyl groups are located in
cis position.9 These results are in accord with the inefficient
generation of alkylidene species from the trans-dialkyl complex
4 (vide supra).  

On the other hand, the corresponding multi-component
system comprised of the dichloro complex 1 and Et3Al showed
much higher activity (run 5),11 thus we investigated the effect
of the aluminum compounds as cocatalysts.  When the complex
4 was combined with Et3Al (run 3), the catalyst system showed
comparable activity to that of the 1/2Et3Al system to give poly-
norbornene with higher molecular weight than that of polynor-
bornene obtained without cocatalyst.  Interestingly, 4 could also
be activated with anhydrous AlCl3 (run 4) to show almost iden-
tical activity to those of 4/Et3Al and 1/2Et3Al systems, while
1/AlCl3 system was inactive.  Thus, the role of alkylaluminum
cocatalysts in the previous tungsten catalyst systems is not only
to alkylate the catalyst precursor but also to accelerate the cat-
alytic process.  Similar activation effects of AlCl3 have been
reported in oxo alkylidene tungsten systems such as
WO(=CHCMe3)(PEt3)Cl2

16 and Tp'WO(=CHCMe3)Cl (Tp' =
hydrotris(3,5-dimethyl-1-pyrazolyl)borate).17 A theoretical
study has indicated that the Lewis acidic aluminum cocatalysts
decrease the activation energy in oxotungsten catalyst system.18

Both of the catalyst systems based on complexes 4 and 1
showed essentially no cis-specificity for the polymer under
these conditions.  The cis-specificity of the catalyst systems
seems to be influenced more significantly by the stereochem-
istry of the O–N–O ancillary ligands.  

Thus, we demonstrated that the trans-dialkyltungsten com-
plex could be a catalyst precursor for the ROMP of norbornene
without cocatalysts and that its activity could be dramatically
enhanced by the addition of AlEt3 or AlCl3 as a cocatalyst.  
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